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Chapter 1

Proof techniques for Nash
Equilibrium

1.1 Fixed Point Theorem

The proof of existance of nash equilibrium is built on �xed point theorems, and there are three key �xed
point theorems: Brouwer, Kakutani, and Tarski.

Rn is non-empty, compact and convex; a lattice.

1.1.1 Brouwer Fixed Point Theorem

Theorem 1 (Brouwer Fixed Point Theorem) If W � Rn is non-empty, compact and convex, then every
continuous function f : W ! W has a �xed point. (The proof of Brouwer Fixed Point Theorem is built on
Intermediate Value Theorem by construct g(x) = f(x)� x and let g(x) = 0)

1.1.2 Kakutani Fixed Point Theorem

De�nition 2 (Correspondence) A correspondence on a set W is a function from W to the set of subsets
of W . In notation, f :W ! P (W ). (We say x is a �xed point of f :W ! P (W ) i¤ x 2 f(x))

Theorem 3 (Kakutani Fixed Point Theorem) If W � Rn is non-empty, compact and convex, and if every
correspondence f : W ! P (W ) is non-empty valued, convex valued and has a closed graph, then f has a
�xed point.

De�nition 4 Let X is topological space, x0 is a point in X and f : X ! R is an extended real-valued
function. We say f is upper semi-continuous at x0 if for every " > 0 there exists a neighborhood U of
x0 such that f(x) � f(x0) + " for all x in U . or equivalently, lim

x!x0
sup f(x) � f(x0).

Claim 5 A function is upper semi-continuous if and only if fx 2 X : f(x) < �g is an open set for every
� 2 R.

De�nition 6 Let X is topological space, x0 is a point in X and f : X ! R is an extended real-valued
function. We say f is lower semi-continuous at x0 if for every " > 0 there exists a neighborhood U of x0
such that f(x) � f(x0) + " for all x in U . or equivalently, lim

x!x0
inf f(x) � f(x0).

Claim 7 A function is lower semi-continuous if and only if fx 2 X : f(x) > �g is an open set for every
� 2 R.

Corollary 8 A function is continuous at x0 i¤ it is upper and lower semi-continuous at x0.
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1.1. FIXED POINT THEOREM M. M. Wei

Corollary 9 If f and g are two real-valued functions with are both upper semi-continuous at x0. Then f+g
is also upper semi-continuous at x0.

Corollary 10 If f and g are two non-negative real-valued functions with are both upper semi-continuous at
x0. Then f � g is also upper semi-continuous at x0.

Corollary 11 If f is positive real-valued functions and upper semi-continuous at x0. Then multiplying a
negative number turns f into a lower-semi-continuous functin.

Corollary 12 If C is a compact space and f : C ! [�1;1) is upper semi-continuous, then f has a
maximum on C.

Corollary 13 If C is a compact space and f : C ! (�1;1] is lower semi-continuous, then f has a
minmum on C.

Corollary 14 The indicator function of any open set is lower semicontinuous.

Corollary 15 The indicator function of a closed set is upper semicontinuous.

De�nition 16 A correspondence � : A ! B is said to be upper hemicontinuous at the point a0 if for
any open neighbourhood V of �(a0) there exists a neighourhood U of a0 such that �(a0) is a subset of V for
all x 2 U .

Claim 17 Upper hemicontinuity is approximately when the graph of the correspondence is closed from the
left an from the right. (But not necessarily closed at every point)

De�nition 18 A correspondence � : A! B is said to be lower hemicontinuous at the point a0 if for any
open set V intersecting �(a0) there exists neighbourhood U of a0 such that �(x) intersects V for all x 2 U .

Claim 19 lower hemicontinuity is approximately when the graph of the correspondence has no closed edges.

Corollary 20 A correspondence that has both upper and lower hemicontinuous properties is said to be
continuous.

1.1.3 Tarski Fixed Point Theorem

De�nition 21 (Lattice) The partially ordered set X is a lattice i¤ every S � X consisting of exactly two
elements has a least upper bound and a greatest lower bound in X.

Rn is a lattice.

De�nition 22 (Complete Lattice) The partially ordered set X is a complete lattice i¤ every S � X has
a least upper bound and a greatest lower bound in X.

Claim 23 If X is complete lattice, then for any a; b 2 X with a � b, the interval fx 2 X : a � x � bg is a
complete lattice.

Theorem 24 (Tarski Fixed Point Theorem) Let X be a non-empty complete lattice. If f : X ! X is weakly
increasing, then the set of �xed points of f is a non-empty complete lattice.
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1.2 Proof of Existance of Equilibrium

The existance of equilibrium are usually proved by �xed point theorem. There are two way to connect NE
and FPT, Fixed Point Theorem.
The �rst way to connect those two concepts are shown by Cachon and Netessine in chapter 2 of Hand-

book of quantitative supply Chain Analysis, edited by Simchi-Levi, Wu, and Shen. If the payo¤ functions
are continuous and quasi-concave, then the best response function can be captured by FOC. So, the NE
can be characterized by solving a system of best response functions, which is equalvalent to a system of
FOC. E.g. if the payo¤ functions of 2 player game are represented by �i(x1; x2), then the best response
function of each player can be represented by  1(x2) = argmax

x1
�1(x1; x2) and  2(x1) = argmax

x2
�2(x1; x2).

Because �i(x1; x2) are continuous and quasi-concave, FOC of the �i(x1; x2) gives the necessary condition
for the optimality. Hence, best response function,  1(x2) and  2(x1), can be captured by FOC system�x�1= 1(x2)()@�1(x1;x2)=@x1=0
x�2= 2(x1)()@�2(x1;x2)=@x2=0

	
. Because the NE of this game, (x�1; x

�
2),is solved by the intercept of two best

response function,
�x�1= 1(x�2)
x�2= 2(x

�
1)
, the NE of this game can also be captured by solving two FOC equations,�@�1(x1;x2)=@x1jx1=x�1 ;x2=x�2=0

@�2(x1;x2)=@x2jx1=x�1 ;x2=x�2=0
.

In order to see why we can use FPT, we can de�ne a function f(x1; x2) =
�
@�1(x1;x2)=@x1+x1
@�2(x1;x2)=@x2+x2

�
. The NE

must satisfy the system equations of FOC,
�
@�1(x1;x2)=@x1=0
@�2(x1;x2)=@x2=0

, so at NE f(x�1; x
�
2) =

�
x�1
x�2

�
, which is a �xed

point.
The second way is a more directly way. First de�ne the best response function as  (x1; x2) =

�
 1(x2)
 2(x1)

�
.

As we know the NE is de�ned as each player has no incentive to deviate from its current decision, we must
have  (x1; x2) =

�
 1(x2)
 2(x1)

�
=
�
x1
x2

�
at NE. Hence, at NE, we must have  (x�1; x

�
2) =

� 1(x�2)
 2(x�1)

�
=
�
x�1
x�2

�
, which is a

�xed point.

1.2.1 If the payo¤ function are continuous and quasi-concave

Lemma 25 If the payo¤ functions are continuous. Then the reaction correspondences have closed graphs.
(Fudenberg and Tirole�s Game Theory P31 and Thm 1.2.)

Lemma 26 If the payo¤ functions are quasi-concave in players�own actions. Then reaction correspondences
are convex-valued. (Fudenberg and Tirole�s Game Theory Thm 1.2.)

Theorem 27 (Debreu 1952). Suppose that for each player the strategy space is compact and convex and the
payo¤ function is continuous and quasi-concave with respect to each player�s own strategy. Then there exists
at least one pure strategy NE in the game. (Assume the objective is to maximize the payo¤ function.)

Theorem 28 Suppose that a game is symmetric and for each player the strategy space is compact and convex
and the payo¤ function is continuous and quasi-concave with respect each player�s own strategy. Then there
exists at least one symmetric pure strategy NE in the game.

1.2.2 If the payo¤ functions are supermodular.

This supermodularity essentially means complementarity between any two strategies and is not linked directly
to either convexity, concavity, or even continuity. So, this is very powerful when we want to work with discrete
strategies.

De�nition 29 A twice continuously di¤erentiable payo¤ function �i(x1; :::; xn) is supermodular (sub-
modular) i¤ @2�i=@xi@xj � 0(� 0) for all x and all j 6= i. The game is called supermodular if the players�
payo¤s are supermodular.1

1For more discussion of supermodular, please refer to Study Notes for Basic Mathematics.
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Theorem 30 In a supermodular game there exists at least one NE. (Use Tarski�s Fixed Point Theorem)2

Remark 31 In competitive newsvendors example, the second-order cross-partial derivative, @2�i=@Qi@Qj,
is negative, so the above theorem can not be applied. However, a standard trick is to re-de�ne the ordering
of the players�strategies by letting y = �Q so that @2�i=@Qi@y is positive, so there exist at least one NE.

Remark 32 Hence, in generally, NE exists in games with decreasing best responses, submodular games,
with two players.

1.3 Proof of Uniqueness of Equilibrium

The proof of uniqueness assume the existance of equilibrium. Hence, before trying to proof the uniqueness
of equilibrium, we do better �rst establish the existance of equilibrium.
There is no dominated method to prove the uniqueness of equilibrium. Hence, we may need to try the

following 4 methods one by one to �nd the working one.
The uniqueness results are only available for games with continuous best response functions and

hence there are no general methods to prove uniqueness of NE in supermodular game. 3

However, for the proof of uniqueness of symmetric equilibrium, it is not too di¢ cult. If the players
have unidimensional strategies, then the system of n �rst-order conditions reduces to single equation and
one need to show that there is a unique solution to that equation to prove the symmetric equilibrium is
unique. Yet, if the players have m�dimensional strategies, then �nding a symmetric equilibrium reduces to
determining whether a system of m equations has a unique solution.

1.3.1 Method 1. Algebraic argument

� In a two-player game, the optimality condition of one of the players may have a unique closed-form
solution that does not depend on other player�s strategy. So, given the solution for one player, the
optimality condition for the second player can be solved. If the second player has unique solution, then
this problem has unique NE.

� For two-player game, one can assure uniqueness by analyzing geometrical properties of the best response
function and arguling that thery intersect only once.

� For general one, we can use contradiction argument: assume that there is more than one equilibrium
and prove that such an assumption leads to a contradication.

1.3.2 Method 2. Contraction mapping argument

De�nition 33 Let (X; d) be a metric space. A function f : X ! X is a contraction4 i¤ there is a number
c 2 [0; 1) such that for any x1; x2 2 X, d(f(x1); f(x2)) � cd(x1; x2).

Theorem 34 (Contraction Mapping Theorem) Let (X; d) be a non-empty complete metric space, then any
contraction f : X ! X has a unique �xed point.

Theorem 35 If the best response mapping is a contraction on the entire strategy space, then there is a
unique NE in the game.

2 It seems the supermodular players� payo¤s function gives the reaction correspondence as weakly increasing properity, so
Tarski�s Fixed Point Theorem applies.

3So, Algebraic argument, Contraction mapping argument, Univalent mapping argument, and Index theory approach are
given in Cachon and Netessine in chapter 2 of Handbook of quantitative supply Chain Analysis, edited by Simchi-Levi, Wu,
and Shen. So, all those four methods are require continuous best response function.
For non-continuous best response function or supermodular games, we should �nd out other methods to prove for uniqueness.
4For more rigrous de�nition of contraction mapping, please refer to Study Notes for Dynamic Programming.
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In the theorem, the contraction mapping condition must be satis�ed everywhere. However, this assump-
tion is restrictive, because it is possible that the contraction mapping condition only holds for "�neiborhood
of NE point and we have unique NE if we start within this " � neiborhood. But formalization of such an
argument is di¢ cult, for some interesting discussion of stability issues in queueing system, please refer to
Stidham (1992): Pricing and capacity decisions for a service facility: stability and multiple local optima.
In the following, we discuss some methods to show whether the best response function is contraction

mapping. Let�s  i(x�i) be the best response function for player i. De�ne the matrix of derivatives of best
response function as

A =

2664
0 @ 1=@x2 ::: @ 1=@xn

@ 2=@x1 0 ::: @ 2=@xn
::: ::: ::: :::

@ n=@x1 @ n=@x2 ::: 0

3775
and let �(A) = fmax j�j : Ax = �x; x 6= 0g, the largest absolute eigenvalues, states the spectral radius of
matrix A. Then, from Horn and Johnson 1996�s Matrix Analysis and Cachon and Netessine in chapter 2 of
Handbook of quantitative supply Chain Analysis, edited by Simchi-Levi, Wu, and Shen:

Theorem 36 The mapping  (x) : Rn ! Rn is contraction i¤ �(A) < 1.

Lemma 37 Let A be a matirx, �(A) is its spectral radius and kk is a consistent matrix norm. Then
1. for each k 2 N : �(A) �



Ak

1=k ;8k 2 N .
2. lim

k!1
Ak = 0 i¤ �(A) < 1.

3. �(A) = lim
k!1



Ak

1=k.
Hence, the most convience way to shown �(A) < 1 is by using the above lemma: �(A) � kAk by letting

k = 1 and consistent norm as the maximum column-sum and maximum row-sum norms5 . Hence, to verify
the contraction mapping, it is su¢ cient to verify that no column sum or no row sum of matirx A exceeds
one: Xn

i=1

����@ k@xi

���� < 1, or Xn

i=1

���� @ i@xk

���� < 1; for 8k (1.1)

However, sometimes the best response function can not be calculated explicitly. So, we can use implicit
function theorem to simplify the row sum of matrix A in equation (1.1) as following:Xn

i=1

���� @�k=@xi@�k=@xk

���� < 1, for 8k
which is equalvalent toXn

i=1

���� @2�k=@xi@xk@2�k=@xk@xk

���� < 1()Xn

i=1

���� @2�k@xi@xk

���� < ���� @2�k
@xk@xk

���� , for 8k
This condition is known as diagonal dominance6 : the diagonal elements of Hessian matrix has the largest
absolute value within its row.

5This is equal to letting k !1 and de�ne the norm as Euclidean norm.
6Diagonal Dominance also imply a matrix is PSD. (Refer to Study Notes for Basic Mathematics)
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